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How, and how quickly, does

+ the Earth system recover from
4107 {e.g. greenhouse warming /-> P

4004 driven) perturbation?

What processes operate and
how do they scale with the
380+ magnitude of perturbation?

3901

370+ How do negative feedbacks
differentially respond to short-
term (<< 1 Myr) vs. tectonic
3504 fime-scale perturbationse
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Terrestrial weathering can be (approximately
equally) divided into carbonate (CaCO,) and
calcium-silicate ('CaSiO,’') weathering:

(1) 2CO,.. +H,0 + CaSiO, - Ca™ + 2HCO, + SiO,
(2) CO,u, +H,0+CaCO, — Ca™ +2HCO,

Ultimately, the (alkalinity: Ca*) weathering
products must be removed through carbonate
precipitation and burial in marine sediments:

(3) Ca* +2HCO, — CO,,, +H,0 + CaCo,

It can be seen that in (2) + (3), that the CO,
removed (from the atmosphere) during
weathering, is returned upon carbonate
precipitation (and burial). In (1) + (3) (silicate
weathering) CO, is permanently removed to the
geological reservoir. This CO, must be balanced by
mantle (/volcanic) out-gassing on the very long
term.

2(aq)
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Furthermore, the rate of rock mineral
dissolution should scale with climate.
Hence the silicate weathering feedback
Is formed:

But are these important / the only factors
(mostly) e Is the sensitivity of weathering to
climate invarient with time (no)c
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Gutjahr et al. [2007]

(Nature 548, doi:10.1038/nature23646 )  ‘triggers’
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One can write (Kump and Arthur [1999], Chem. Geol.):

Corg/ ( Corg + FCaCO3) =

(813C0bs B 813Cinput) / (813CCaCO3 B 61?,CCorg)

B total carbon emissions_

(EgC) (exa g)

dlagnosed C,.buria
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¥ Small perturbation

* Abundant weatherable
mineral soils (post snowball?)

* Well oxygenated ocean,
oligotrophic ocean state

* (Narrow continental shelves?)

% Large carbon/climate
perturbation (deplete easily
weatherable mineral soils, severe
ocean deoxygenation)

¥ Reduced initial state of ocean
oxygenation, productive ocean

¥ Extensive (latitudinally?) shelves?
(/tectonic configration)



Impulse response function analysis of the ‘long tail’ of CO, .
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Impulse response function analysis of the ‘long tail’ of CO, .

Response of fraction of CO, removed vs. the
characteristic time-scale, as a function of
total emissions, ranging from 1,000 PgC (dark
blue) to 20,000 PgC (yellow).
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Recipies for the silicate weathering burger

As a function of ...

* Mean (annual) global (land) surface air
temperature (e.g. [Brady, 1991])

* Temperature + rainfall
* Temperature +/- rainfall + atmospheric CO,

* Temperature +/- rainfall +/- atmospheric CO, +
terrestrial vegetation net primary production

* Atmospheric CO, only (e.g. Walker et al. [1981])

* Can also account for uplift and rates of physical
erosion, land surface slope (requires explicit 2D
scheme)

* Can employ an explicit soil weathering model
(driven by GCM output) (e.g. Taylor et al. [2015])

(And see Colbourn et al. [2015] — The timescales and
sensitivities of terrestrial weathering feedbacks on
atmospheric CO2, GBC 29, 583-596,
doi:10.1002/2014GB005054.) (also Colbourn et al. [2013])




Recipies for the silicate weathering burger

BAU future emissions scenario on top of historical
emissions, to a total cumulative carbon release

of 5000 PgC.
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Recipies for the silicate weathering burger

ACO, (atmosphere) (ppmv)

10° 10* 10° 10°
time (year)

* Mean (annual) global (land)
surface air temperature (e.g.
[Brady, 1991])

* Temperature + rainfall



Recipies for the silicate weathering burger @

Lyt le Earth System
Vegetation Modelling

Models ) :
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BiOtiC Carbon-GENIE K(
Weathering W SEA02.01g st * Mean (annual) global (land)

model = surface air temperature (e.q.
7 [Brady, 1991])

* Temperature + rainfall

T * Regression of the output of a
mechanistic weathering model
driven by GCM and terrestrial
vegetation output ... against

. mean global temperature [Taylor
T et al., 2015]

Future climate
change simulations
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Recipies for the silicate weathering burger

* Mean (annual) global (land)
surface air temperature (e.g.
[Brady, 1991])

* Temperature + rainfall

* Regression of the output of a
mechanistic weathering model
driven by GCM and terrestrial
vegetation output ... against
mean global temperature [Taylor
et al., 2015]
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time (year)



Recipies for the silicate weathering burger

ApH (mean ocean surface, pH,,,)
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AQ (ocean surface calcite saturation)
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Recipies for the silicate weathering burger *
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2. (carbon inventory)

Recipies for the silicate weathering burger '
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surface air temperature (e.g.
[Brady, 1991])

% Regression of the output of a
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et al., 2015]
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